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Abstract

We introduce a formalism called graphical learning algorithms and use it to produce bounds
on error deviance for unstable learning algorithms. This formalism suggests a flexible class
of extensions of existing algorithms for which risk can be decomposed into algorithmic model
risk plus estimation error in a way that enables bounds on estimation error and analysis of
the algorithmic model risk. For example we obtain error deviance bounds for support vector
machines (SVMs) with variable offset parameter and estimation error bounds for variations of
SVM where the offset parameter is selected to minimize empirical risk. In addition we prove
convergence to the Bayes error for variations of SVM that use a universal kernel and choose
the regularization parameter to minimize empirical error. We provide experimental results that
suggest that these variations may offer advantages over standard SVMs in both computation
and generalization performance.
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1 Introduction

Bousquet et al. (Bousquet & Elisseeff, 2002) determine bounds on the deviance between the
empirical risk and the risk for stable learning algorithms and Kutin and Niyogi (Kutin & Niyogi,
2002) have extended their work to handle various forms of stability. However many important
learning strategies are not stable in any of these senses. For example Vapnik’s (Vapnik, 1998)
1-norm soft margin support vector machines (SVMs) which include the offset parameter are not
stable. Bousquet et al. show that if the offset parameter is fixed at zero then they are stable and
apply their theory to obtain bounds on the risk deviance. However the most commonly used
SVMs include the offset parameter as a variable and so the determination of bounds on risk
deviance in this case is an important open problem. In this paper we develop a formalism called
graphical learning algorithms to analyse the statistical stability of unstable learning algorithms
and prove a general bound on the risk deviance for them. This result is then applied to SVMs
which include the offset parameter to produce bounds on risk deviance which are similar to
those of Bousquet et al.

Although risk deviance is extremely important it characterizes only one aspect of an algo-
rithm’s performance. Indeed the risk may be large even when the risk deviance is small. To
better assess the actual risk we consider the notion of algorithmic estimation error. Recall
that the smallest possible risk is the so—called Bayes risk. Although there exist algorithms
whose risk converges to the Bayes risk (as the number of samples goes to co) there may be no
algorithm possessing uniform rates of convergence (e.g. see (Devroye, Gyorfi, & Lugosi, 1996)
Chapter 7). To better understand the factors that influence risk much effort has been devoted
to the study of the empirical risk minimization algorithm and the decomposition of its risk
into two terms; the estimation error which is due to finite samples and the approximation error
which is due to the choice of hypothesis class (Devroye et al., 1996; Vapnik, 1998; Vidyasagar,
1997). This decomposition has provided much insight. For example, with mild assumptions on
the hypothesis class it is possible to establish rates at which the estimation error converges to
zero, independent of the distribution. However, because empirical risk minimization is often
computationally intractable there is a gap between this theory and the algorithms that are com-
monly used in practice. On the other hand Vapnik has introduced the support vector machine
algorithm which is computationally tractable and has produced very low risk in a large number
of empirical studies. Recently it was proved that SVMs (with universal kernels) converge to
the Bayes risk (Steinwart, 2002; Zhang, 2003; Steinwart, 2003a), but so far there are no finite
sample bounds on estimation error for SVMs. To better understand the factors that influence
the finite sample risk of algorithms other than empirical risk minimization and to help close
the gap between theory and practice we consider the following (slightly generalized) notion of
estimation error. Let R be the risk of the algorithm applied to the training data. If there exists
a value 7, such that both P(R > r, + €¢) and P(R < r, — €) decrease with sample size then we
define R — r, to be the algorithmic estimation error. If this decrease is strong enough then R
converges to r, with probability 1 and r, is the limit of the risk. Once such an r, is established
the analysis of algorithms decomposes into the analysis of r, and bounds on estimation error.

The graphical learning algorithm formalism appears to facilitate the development of algo-
rithms for which bounds on estimation error may be obtained. This is accomplished through the
introduction of estimation error models and is demonstrated to provide bounds on estimation
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error for variations of the SVM algorithm.

This paper is outlined as follows. In Section 2 we introduce graphical learning algorithms
and introduce the fundamental tool in their analysis. In Section 3 we prove general results for
classification and apply these results to SVMs which include the variable offset parameter. In
Section 4 we introduce estimation error models and describe some general classes of algorithms
for which estimation error bounds may be obtained and apply these results to an estimation
error version of SVMs. In Section 5 we describe parallel approximations to graphical learn-
ing algorithms and provide a result on their performance and computation. In Section 6 we
study estimation error model selection. In particular we discuss the implication for important
constants obtained in the bounds presented. In addition we use the estimation error model
formalism to study variations of SVM which possess improved estimation error bounds and
improved computational requirements. Throughout we ignore measurability questions and is-
sues regarding the attainment of infimums. The latter can be handled through approximate
minima but complicates the presentation.

2 Graphical learning algorithms

Consider sets X and Y and a probability space Z = X x Y. Let z = (z,y) denote the
corresponding random variable with probability measure P and let S = supp(z) denote the
support of z. Let the hypothesis space be decomposed F = S x U into what we call the stable
and unstable components. Let ¢ : R X Y — R be a cost function and let its associated loss
function | : F x Z — R be defined through I(f,z) = ¢(f(x),y). The risk associated to the
measure P and the cost function c is defined as

R(f) = Rp(f) = Ep(I(f,-))- (1)

where we drop the subscript P when no chance of confusion exists. The empirical risk associated
to an n-sample z, is defined as

Remp(f) = En(l(fv)) (2)

where FE,, is the sample mean operator associated with the n-sample z,. Since many learning
strategies do not have unique solutions, we define a learning strategy to be a set-valued map

A:Z" 5— F.

Definition 2.1. We say that a learning strategy A is graphical if
A, ={(A] ,u):uel,}, Vz€Z"

for some family of mappings
{A*: Z" = S,u € U}

and for some set-valued map

U:2" = U.
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This definition implies that for each z,, A, is the graph over U4 determined the family
A%, u € U restricted to a subset U,, of its domain. In particular the set-valued nature of
A is generated by U. As an example of an important class of graphical strategies, consider
when A is determined by minimization A,, = argminy J,, (f) of a criterion function. If A} =
arg min, J,, (s,u) has a unique solution for all u, then the general fact min,, = min, min,
implies that A is graphical.

Definition 2.2. Equip ¢ with a pseudometric d. A graphical learning strategy A (over a
pseudometric space) is Lipschitz with respect to the cost function ¢ over a subset S C Z if for
its associated loss [ we have

|l((A1zL,t7ul)7z) - l((AgZ,u2),z)| S d(u17u2)7 Vz € S, Zn € Sn

A learning algorithm is defined as a selection A from the set-valued map A. That is
A:Z" 5 F, where A, € A, , Vz, € Z"

A selection from a graphical learning strategy has a special form. It is defined through a
selection 4 from U as

A

A,, = (A%n 4,,), where @, € U,,,Vz, € Z"

n

A Lipschitz graphical learning algorithm is defined as a selection from a Lipschitz graphical
learning strategy.

The following simple lemma will be our main tool in analyzing Lipschitz graphical learning
strategies.

Lemma 2.1. Let X = (Xi)teT be a real valued stochastic process over a pseudometric space
(T,d). Suppose that X is Lipschitz

|Xt1 - thl < d(t17t2)7 th,tg eT.

Fiz ¢ > 0 and consider a cover O of T of balls centered at points t;,i = 1,..,|0| of radius e.
Then

P(sgp X > 77) < 0| ij}.l.l’)wlp(z\fti >1n— 6)

Recall that for a pseudometric space (7, d) the covering numbers N (7 ,d, €) are the mini-
mum number of closed balls of radius e it takes to cover 7. It follows that |O| > N(T,d,e€)
and that there exists a cover such that |O| = N(T,d,¢€) in the statement of this lemma.

Proof. Let O; denote the balls of the cover centered at the points ¢;. Since X is Lipschitz
| X — &,| < eforall t € O;. Consequently

P(sup/\.’t > 77) < |(’)|sup73<sup X > 77) < |(’)|supP(Xti +e> 7]).
t i te0; i
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Lipschitz graphical learning algorithms may not be stable in any of the senses prescribed
by Bousquet et al.(Bousquet & Elisseeff, 2002) or Kutin and Niyogi (Kutin & Niyogi, 2002).
However, the following application of Lemma, 2.1 can be used to apply their results to unstable
algorithms.

Theorem 2.1. Consider a graphical learning algorithm A over a pseudometric space (U,d)
which is Lipschitz with respect to the cost function c. Fiz e > 0 and n > 1 and consider a
minimal U-cover of balls centered at points u;, i = 1,.., N(U,d, €) of radius €. Then for the risk
(1), the empirical risk (2) and any n we have

Po(R(Ae)~Rempl(A2) > 1) SN@Uud) sup  Pu(BUAL, 1) = R4 w) > 1= 2¢)
=1,.. s@y€

and

Pa(1R(As)~Rempl(A:1)| > 1) SN@hd) _ sup  Po(IR(AL w) = Remp(AL, )] > 1 - 2)
1= "y ) ’6

Proof. From Definition 2.1 of a graphical learning strategy
R(Azn) - Remp(fizﬂ) < SUPrea,, (R(f) - Remp(f)) = SUPyeu,,, (R(A?n, U) - Remp(A?nau))
< supyey (R(AY,,u) — Remp(A%,, 1))
(3)

so that

Pu(R(Az,) = Rempl(Az,) > 1) < Pu(sup (R(AL, ) = Remp(A2,,0)) > 7). 4)

uel

For the righthand side consider the stochastic process

(R(A7,,u) = Remp (A7, 1))ucu-
Since
1((A42,,9),2) = 1((AL,. 1), 2)] < d(s,1)
it follows that
|R(Af,n, 5) — Remp(Aina 5) — R(Ain,t) + Remp(AZnatH < 2d(s, 1)
and application of Lemma 2.1 with 7 = U and pseudometric 2d at scale 2¢ obtains the first

result. The result for the absolute value follows in a similar way. ¢

Note that Theorem 2.1 is general and characterizes the performance of the learning algo-
rithm in terms of its performance for fixed values of the parameters u and the pseudometric d
so all that is needed is to bound the latter. When the algorithm is stable for fixed values of the
parameters u, the latter may be analyzed through stability arguments. See Kutin and Niyogi
(Kutin & Niyogi, 2002) for a thorough investigation into forms of stability which provide good
bounds.
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3 Classification

Although Theorem 2.1 can be applied to all of the examples in Bousquet et al. (Bousquet &
Elisseeff, 2002), we only show how to apply this framework to classification. Let Y = {—1,1}
and define the y-clipped cost functions i (f, z) = ¢y(f(z),y) where for v > 0

1 yy <0
Gy =q1-% 0<yj<y
0 Yy >y -

According to (Bousquet & Elisseeff, 2002) a real valued classification algorithm A has
classification stability g3 if

14z, = A illoo < B, Vi, z, € 8™

where z,? denotes the n-sample z, minus the i-th point z,(i). It is said to have uniform
stability with respect to the loss function / if

||l(Azna) _Z(Az;@a)Hoo §187 Vlazn es".

Theorem 3.1. Consider a graphical learning algorithm A over a pseudometric space (U,d)
which is Lipschitz with respect to the cost function c,. Let R denote the risk function associated
with c. Suppose that for each u, (A%, u) : 2z, = (A% ,u) has classification stability 3. Then
for any € > 0,

2

g i
N 2
5

Pn(|R(Azn) — Remp(Az,)| > €+ 2;) < NU,d,e/4)e *

Proof. Tt is easy to see that classification stability 4 implies uniform stability §/y for L,.
Theorem 12 of Bousquet et al. (Bousquet & Elisseeff, 2002) extends identically to the absolute
value of the risk deviance for real classification algorithms with uniform stability 3/~. That is,
since |I,| < 1, for each u € U we have

2né2

Fn ('R(Agn’“) = Remp (45, u)| > €+ 25) <e (7 )

We apply Theorem 2.1 with n = é + 2% and € = €/4 to (5) with € = ¢/2, followed by é —> €.

What is left is to characterize Lipschitz graphical classification algorithms. Instead of
proceeding generally we specialize to soft margin support vector machines. Let H denote a
Hilbert space and let S = H* = H be the bounded linear functions on H. Let &/ = R be the
constant functions on H. Let the model space F = S x U be the affine functions on X C H.
That is, the point f = (1,b) € F corresponds to the function f(x) =1 -2+ b. On the product
space Z = X X Y consider the penalty function

nf(z) = max (0,1 —y(¢ -z +b)).
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Recall that for an n-sample z, we let F,, denote the sample mean operator. In general we use
the subscript n to denote a shorthand for dependence on the n-sample z,. With this notation
let

Jn(,6) = []* + CEnny ) (6)

denote the soft margin criterion with regularization parameter C' > 0. We define the soft
margin classification strategy SV M to be the solutions

(w’b)n = arg ITIpngl Jn(wvb) (7)
to the soft margin problem. We note the identification

Theorem 3.2. Suppose that |supp(z)| < K and consider the y-clipped cost ¢y and its corre-
sponding risk function R. Consider an algorithm A which selects a solution to SVM (7) so
that when all the data are one class y* the solution (1,b) = (0,y*) is obtained. Then for any
v >0 and e >0,

2

C’Kz) < (64(\/61{—1-\/5)3 n 1)62(2—07;;2?)2
yn

Y

Pa(1R(As,) = Rempl(Az,)| > e+ ®)

72 €2

Proof. Howse et al.(Howse, Hush, & Scovel, 2001) show that any selection from (7) which sat-
isfies the assumption of the theorem satisfies Py ((%, b)) € [-(1++VCK),1++/CK]. Therefore
we define B = 1 + v/CK and redefine

U=B=1{b:b| <B}. (9)
Let

PYn(b) = argn:/}injn(d]ab) (10)

denote the solution to the fixed b soft margin problem. It is well known that this solution is
unique and so defines a parameterized family of mappings

AY =1, (b).
Since

min = min min
(¥,b) by

we obtain that

(w’b)n = {(f‘/)n(b)’b) b€ PM((f‘/}ab)n)} (11)

where Py, is the projection from subsets of F to subsets of U.
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Consequently, SV M is graphical with U,, = Py((¢,b),). Bousquet et al. (Bousquet &
Elisseeff, 2002) show that if |supp(z)| < K then the algorithm A° determined by optimizing
the b = 0 soft margin criterion 10 has classification stability

 CK?
o

p (12)

The same proof technique can be used to show that the algorithm A® determined by optimizing
the fixed b optimization problem (10) also has the same classification stability (12) for any b.

We now proceed towards proving that SV M is Lipschitz. To that end we prove the following
lemma which is valid for more general measures than the empirical distribution corresponding
to an n-sample z,.

Lemma 3.1. Let QQ be a probability measure on Z with bounded support. Define the criterion

Jo(1,b) = 9> + CEqney ) (13)
and let
Pq(b) = arg H}pin Jq(3,b) (14)

denote the unique (Zhang, 2001; Steinwart, 2003b) solution to the fized b soft margin problem
at Q. Then

1Yo (b1) — g (be)[? < Clby — b (15)

Proof. Consider a function F(h) = |h|? + L(h) where L : H — R is convex and finite. Then
according to Barbu et. al.(Barbu & Precupanu, 1978) the subdifferentials add

OpF = 2h + Oy L.

Barbu et al. credit Rockafellar with this infinite dimensional extension of his finite dimensional
result (Rockafellar, 1970). Let h* be a minimizer of F. It follows that 0 € Oy« F' = 2h* + Op+ L
so that —2h* € Oy« L. However, by the definition of subdifferential,

L(h) — L(h*) > (—2h*,h — h™), Vh.
Therefore
F(h) — F(h*) = |h> = |h*]> + L(h) — L(h*) > |h]> = |h*|*— < 2h*,h — h* >=|h — h*].
and consequently we obtain the inequality of Bousquet et al. (Bousquet & Elisseeff, 2002)
F(h) = F(h*) > |h— h*P? (16)

which they derived under the additional assumption of differentiability of L. Since @ has
bounded support CEgy.p) is finite so we can apply (16) to Jg(%,b) with b fixed to obtain

o (b1) — P(b2)* < Jo(1hq(ba),b1) — Jo(1hq(by), br)

7
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and

9 (b1) — Yo (b2)* < Jo(vq(b1), b2) — Jo(1q(b2); b2)-

Adding the two we obtain

2l (b1) — P (b2)® < Jo(vq(b2),b1) — Jo(¥q(b1),b1) + Jo(vq(b1), b2) — Jo(vq(b2), b2)

=C (Eczn(wQ(bz),bl) = EQNyqg1),61) T EQN(po(b1)62) — EQn(waz),bz))

= CEq (n(wQ(bz),bl) — Mpg(b1),b1) T Mg (b1),b2) ~ Mg (b2),b2)>'

Since [Ny (62),61) — Mg (ba)b2) loo < [b1 = ba| and [[7yq (b1),62) = Mwsg(b1),b1)lleo < b1 — ba| the
proof is finished. ¢

We continue. The definition 2.1 of a graphical strategy extends to set-valued maps A :
B — F where B is a set of probability measures. Indeed, in Section 4 such maps are used to
analyze estimation error.

Lemma 3.2. Let Q be a probability measure on Z with supp(Qx) < K where Qx is the
X-marginal of Q, and let the set-valued map A be graphical (Def.2.1) with components

AY = P ()
the fized b soft margin solutions at QQ (14). Then A is Lipschitz with respect to I, for the metric

1
d, (b, ba) = ;(\/EK\/|b1 — by| + by — bo)).

Proof.
|l7((.,4b1,b1),2’) - 17((Ab27b2)72)| = |17((¢Q(b1)7b1)7z) - l7((¢Q(b2)7b2)7z)‘

= ley (($q(b1), b1)(2),y) — oy (¥ (b2), b2)(x),y)| < %|(¢Q(bl)v b1)(z) = (Y@(b2), b2) (z)]

- %wQ(bl) 4 by — o (be) -z — byl < %(wQ(bl) — o)X + [by — bal).

Application of Lemma, 3.1 finishes the proof. ¢

The fact that SV M is Lipschitz with respect to [, for the metric d, now follows from
Lemma 3.2 by letting () be the empirical distribution of the n-sample z,.

To apply Theorem 3.1 we need to bound the covering numbers N(B,d,,e/4). Because
these covering numbers are small compared with exponential decay of the probability bounds
we bound them crudely.

Lemma 3.3.

4(vVCK +/2)

3
7 +1.

N(B’dvae) <
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Proof. Let d(bi,b2) = VOK+/]b1 — b + [b1 — bs| so that d, = 1d. Since N(B,dy,¢) =
N(B,d,ve) we bound N(B,d,e). Since |b| < B it follows that |by — ba| < 1/|by — ba|V2B
so that

(b1,b2 fK\/|b1—b2 +|b1—b2| <(fK+VQB)\/|b1—b2‘
so that if we let o = v/CK 4 v/2B then d(by, b2) < ay/]b1 — ba| and we obtain
N(B,d,e) < N(B,ar/] |,€) = BH, ).

Since the latter is bounded by

2Ba?
62

and we can bound

= (VCK +1) (\/5K +1/2(VCK + 1))2 < 2(VCK +1)(CK? + 2(VCK +1))
<2(VCK +1)(VOK +v2)? < 2(VCOK +V2)3

the proof is finished. ¢

We now proceed to finish the proof of Theorem 3.2. The classification stability bound (12)
combined with the fact that Lemma 3.2 implies that SV M is Lipschitz with respect to [, for
the metric d, and the bound on the covering numbers of Lemma 3.3 applied to Theorem 3.1
finishes the proof. ¢

Instead of using the stability result (12) of (Bousquet & Elisseeff, 2002) we can alternatively
apply Theorem 4.2. Indeed, assuming in (32) that @ is the empirical measure with respect to
2.t we find

B 0) =4 Oloe < C|2 S an(hlen(d)) = ——5 3 an(hen ()
j=1 #i
= O an(@h(en(@) ~ — o 3 sz ()
n n(n —1) por
< CK CK
= T Taon

Hence this path yields that SV M has classification stability § = 2CK . Note, that this is slightly
worse than (12). Furthermore, instead of using Theorem 12 of (Bousquet & Elisseeft, 2002)
to establish (5) and Theorem 3.2 one can also apply (33). In this case the term 23/ in (5)
vanishes and hence % in (8) disappears. However, the arising constants in the exponential
term on the right sides of (5) and (8) are slightly larger. Therefore we do not go into details of

this route.
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Although this path from Theorem 3.1 to a result like Theorem 3.2 is general, we note that
for SV M we can actually do a little better because it has some special structure. Indeed, it is
well known that it is only b which can vary on the solutions. Namely

(¥,b)n = {(¢na b);b € Py((, b)n)}

where 1, does not depend on b. If one considers the proof of Theorem 2.1, in the first line one
can assert that 1, (b) = 1, is constant in b for optimal b before expanding the supremum to
all of the unstable set. Then one needs only use a pseudometric d such that

(%), 2) — U((%n, i), 2)| < d(b,by)

for the constant ,,. Then the proof of Lemma 3.2 shows that we can choose
1
dy(b1,b) = ;\bl — byl

Consequently one obtains Theorem 3.2 with covering numbers linear in %

8(vVCK +1)

N 4) <
(B,dyc/4) < =

+1

instead of the quadratic M + 1. That is

Theorem 3.3. Suppose that |supp(z)| < K and consider the y-clipped cost ¢y and its corre-
sponding risk function R. Consider an algorithm A which selects a solution to SVM (7) so
that when all the data are one class y* the solution (1,b) = (0,y*) is obtained. Then for any
v>0and e >0,

2

i i CK? 8(VCK +1 — eI
Pa(IR(As,) — RemplAz)| > e + ) < (M +1) R
e
We can state this bound in the alternative form. If § < e~ and n > -2CE+1° 151 then
T = 32(VCK+1)2 0

with probability greater than 1 — ¢ we have

2CK?
cK? V2% +1)\/In(12f\/_K+1)+ln%. a7

A, ) - A, )] <
|R( Zn) Remp( Zn)|— yn + \/ﬁ 2CK2

To prove the bound (17) observe that if §(x

) = (% + 1)e °* we can bound the inverse z(J) as
follows: § = (% + 1)e " implies that z = %( =+1

n(T +1) —|—ln5) which implies that z > +1In }
so that 2 < #(In( avb_ 1) +In3) and if b > L In} and § < e ! then it follows that

N

z < %(ln2a\f—+— In 3). Then apply with z = €2, a = @, and b =

n
—0  and use
Q(MTK+1)2

o0
>
IA

12.

10
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The bound (17) can be compared with the result of Example 2 of Bousquet et al (Bousquet
& Elisseeff, 2002) for soft margin SVMs with b = 0 as follows. Setting v = 1, the % term is
identical, the coefficient in front of the large square root is larger by a factor of two and inside
the large square root is an additional Inn and constant term. The factor of 2 can mostly be
removed by modifying Theorem 3.1 so that €/4 in the covering numbers becomes more like
€/10 with a better constant in the exponential. This however increases the coefficient in the In
term. We do not provide the details.

4 Estimation Error

The bounds of Theorem 3.1 are bounds on risk deviance. They control how different the risk
R(A) is from the empirical risk Re,;,(A) but they do not say anything about the size of the
risk which could be large. To assess the size of the risk we consider the notion of algorithmic

~

estimation error R(A) — r, presented in the introduction. We seek a risk value r, and bounds
on concentration of the risk R(A) about .. To accomplish this we introduce learning models as
a natural extension of the notion of learning strategies and show how the analysis of estimation
error can be accomplished for graphical Lipschitz learning models through the analysis of

estimation error models.

A learning model should be thought of as the learning strategy applied to an infinite number
of samples. Specifically, let P8 denote a set of probability measures on Z. We define a learning
model to be a set-valued map

A: B> F

where we note the similarity with the definition of a learning strategy. This similarity is
fundamental in what follows. For a fixed cost function ¢, we recall from (1) that the risk
function R depends on the measure P and so extend it to depend on an arbitrary measure
Q@ € ‘B and denote this extension Rg. For specific cost function ¢ we define the model risk at
P to be

rp(A) = inf Rp(f) (18)

where we will consider the value 7, = rp(A) in defining estimation error. Let Z : Z" — B
denote the map from n-samples z, to their corresponding empirical distributions

1
Ton = D buatiy
i=1,n
The learning strategy A canonically induced by a learning model A and the map 7 is

A= AT

This learning strategy is obtained by simply applying the learning model to the empirical
distribution associated with the sample data. Such learning strategies are symmetric under
permutation of the indices labeling the n-sample. We use the shorthand R, = Rz,,. The

11
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definitions of graphical and Lipschitz models are the same as for learning strategies in Definitions
2.1 and 2.2 and the canonical strategy inherits these properties.

Now that we have defined the model risk value (18) we seek models which possess bounds
on estimation error. To that end, consider a family of mappings A" : P — F,u € Y and define
a graphical learning model A by choosing the optimal u values through risk minimization
Ug = arg min, gy RQ(A’é, w). That is, an estimation error model is defined as

= {(A%, u) : in Ro(AY, )} 19
Ag = {(AQ,u) 1 u € arg Iin Q(AG,u)} (19)
and its model risk at P (18) can be written

rp(A) = Inf Rp (AP, u). (20)

Tt is Lipschitz with respect to ¢ when the family A%, u € U satisfies Definition 3.2. Tts canonical
learning strategy (A = AZ) is

Az, = {(A%,,u) s u € arg min Rep (A% ')} (21)
u' € "
where A7 = A7, .

By choosing Q) = 7z, we can use the following lemma to bound the estimation error.

Lemma 4.1. Consider a family A" : B — F,u € U, a cost function ¢, and its corresponding
family of risk operators Rg,Q € B. Consider the estimation error model (19) and its model
risk rp(A) at P (20). Let A be a selection from A. Then for every Q € P

~

Rp(Aq) —rp(A) < sup (Rp(AQ,u) — Rp(Ap, u)) + 2sup |Rq(AG, u) — Rp(Ag, u)|
and
rp(A) - Rp(Ag) < sup (Rp(Ap, u) — Rp(AQ,u))
where the supremums are taken over all of U.
Proof. Since A is graphical, Rp(le) RP(AQ ,u@) for some ug. Let up be a point where

the infimum (20) 7p(A) = Rp(A},up) is attained. It follows from (19) that RQ(AQ ,uQ) <
RQ(AQ, u) Yu € U and from (20) that RP(AP ,up) < Rp(A%,u) Yu € U. Therefore,

Rp(Ay,uq) = Rq(Ag,uq) + Rp(Ay,uq) — Ro(Agy’, uq) (22)
(AQ 7’LL7>) + sup, |RQ(A%7U) - RP('A?Q?U)‘
but since
RQ(AZ sup) = Rp(AF,up) + RQ(AY ,up) — Rp(AJ, up) (23)

< R’p(Agp,U’P) + sup, ‘RQ(AQa ) - R’P(AQa )|

12
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we have

RP(AQ) = RP(AZQ,UQ) < RP(AZP,UP) + 2sup |RQ(A%, u) — RP(A%,U)L

Consequently,

~

Rp(Aq) —rp(A) < Rp(AF,up) — Rp(AY,up) + 2sup |Rg(Agh, u) — Rp(Af, u)|

and the first result follows. For the second result we observe
rp(A) — Rp(Aq) = Rp(AY, up) — Rp(A?,uq) < Rp(AR, ug) — Rp(Ag,ug)

and the proof is finished.

Now consider the SV M model

SVMq = argmin (191> + CEqneyp))- (24)

As mentioned before
SV Mg = {(¢q,b) : b € Pg(SVMg)}

is graphical with the choice Uy = P3(SVMg) and is Lipschitz. However, because this model
is unstable and not directly related to risk optimization, bounds on its estimation error appear
difficult to obtain. It turns out that making the selection process in the unstable parameters
based on risk minimization is sufficient to remedy this situation. That is, let «f = B and let
SV M denote the estimation error model (19) defined with the unique solution

Ab = 1q(b) = arg min (19 + CEgney.p) (25)

to the fixed b soft margin problem determined by . Since P(SVMg) C B it follows from
the definition of model risk (20) that SYM provides no degradation in model risk

ro(SVM) < ro(SVM). (26)

We can now bound the estimation error for SVM.

Theorem 4.1. Suppose that |supp(z)| < K and consider the «y-clipped cost function and its
associated family of risk operators Rg. Let B={b: |b| <1+ +/CK} and define

re = inf Rp(4p(),0). (27)

where p(b) is the solution to the infinite sample fized b soft margin problem (25) at P. Con-
sider an algorithm A which minimize the empirical risk Remyp over all (1n(b),b),b € B where
¥ (b) is the solution to the fized b soft margin problem

Pn(b) = arg II:pin (|¢‘2 + CEnn(w,b))' (28)

13
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Then for any 0 < e <1

7L52

2 3 —_—
20K n 6) < (1536(\/ZK2+ V2) +3)e 32(2 CK2 11)2
€

Pn (RP(Azn) >y +

and

7L62

8(2 CE2 41)2

64(vVCK + /2)

,}/2 €2

Pn (RP(AZn) <Tx — 6) < 2( : +1)e

Proof. Let Remp = Rz, denote the empirical risk for the y-clipped cost function. Since Ais
a selection from the canonical strategy of SVM and r, = rp(SVM) we can apply Lemma 4.1
with () = Zz, to obtain

Pn (RP(Azn) > r, + 2CK2 4 e)

< Pa(supy [Rp (1 (0),5) = Rp(p(0), D) > 5) + Pa(supy [Reonp (4 (8), ) — R (0),B)] > S+ 5)
(29)
and
Pu(Rp(As,) <o =€) < Palsup|Rp(n(8),5) ~ Rp(p(5),D)] > ) (30)

We first address the P, (supy |Rp(¢n(b),b) — Rp(¢p(b),b)| > &) term which appears in
inequality (29) with £ = €/2 and (30) with £ = e. To do so observe that Lemma 3.2 implies
that SYM is Lipschitz with respect to the metric d- in Lemma 3.2. Consequently we can apply
Lemma, 2.1 with pseudometric 2d, to the stochastic process (|Rp (1, (b),b) — Rp(1p(b),D))|)sen
to obtain

Po(supy | Rp (4 (0),b) = Rp(4p (8), )] > ¢)

31
< N(B,dy,&/4) sup;—1,..N(B,d, a) Pn(|RP(¢n(bz'), bi) — Rp(¢p(bi), bi)| > 5/2) Y

We now appeal to a corollary of Steinwart’s (Steinwart, 2003b) extension to infinite dimen-
sions of a result of Zhang (Zhang, 2001).

Theorem 4.2. (Zhang, Steinwart) Let 1, (b) and ¢p(b) be as above. Then there exists a
function h : Z — [—1,1] such that for all probability measures @ we have

[Yu(0) ~ @ )] < C |- 3" sn()h(zn () ~ Fongzh(z) (32
j=1

Furthermore, for every 5 >0

né?

Pu(tbn (b) — p(b)] > €) < 2¢” sc?K>42é0K, (33)

14
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Consequently we obtain

. ne®
2
39 C2K4 | 46CK
72 v

Pr(|Bp (¢ (b), b)—Rp(¢p(b), b))| > £/2) < 'Pn(%KWn(b)_"ﬁP(b” >§/2) < 2e
(34)

and using (31) and Lemma 3.3 we obtain

ne2

64(vVCK ++/2)3 32 C2K4 | 46CK?
Pa(sup [Rp(6a (0).5) = R (6p(0). )] > ) < 2( (CQQ VO | ) nEEES
When 0 < ¢ <1 this easily simplifies to
64(vCK 3 - —
Pn(SLblleP(lﬁn(b),b) — Rp(yp(b),b)| > &) < 2( (ngj v +1)e *EHTT(35)

Setting ¢ = € and utilizing (30) obtains the second result of the theorem.

We now consider the second term in the inequality (29). As mentioned in the proof of
Theorem 2.1 the stochastic process |Remp(9n (b),b) — Rp (1,(b), b)|sep is Lipschitz with respect
to the pseudometric 2d, so we can apply Lemma 2.1 to obtain

P (supb |Rp (1n(b), ) — Remp(1hn(b),b)] > § + C:y—lf;)

9 36
< N(B, d, €/16) sup;, Py, (|RP(¢n(b)ab) - Remp("/’n(b)v b)| > ¢€/8+ C:y—I:;> 0

Utilizing the result of Bousquet et al (5) and Lemma, 3.3 for the righthand side we obtain

€ CKQ) < (1024(\/5K+\/§) e

. o Y- e
P (510 12 (0 (0),0) ~ Ry (0,0 > 5+ 5 e

(37)

Combining this result with (35) with £ = €/2 in (29) obtains the second result of Theorem
4.1. ¢

We note that as a consequence of the proof we can conclude bounds on estimation error for
the b = 0 soft margin classifier by setting B = {0}. Then the complexity due to the covering
numbers disappears and the bounds improve in concentration.

5 Parallelization

Highly parallelizable approximations to Lipschitz graphical learning models appear easy to
construct. For example consider the estimation error model A from line (19) and substitute a
parallel approximation A to it in the following way. Let 4; be the centroids of a cover O of U
by balls of radius « and let U = {@;} be the set of centroids. Define the a-approximate model

Aq = {(A%,u) : u € arg min RQ(Ag,u')} (38)
u' el

15



LANL Technical Report: LA-UR-03-4845 6 Model Selection

This model consists of |O| > N(U,d,«) parallel evaluations of Ag for u € U followed by a

minimization of R (Af, u) over the set U of size |O|. A fully parallel algorithm for the canonical
strategy follows directly. Although in theory one can choose a cover such that |O| = N(U,d, «)
it is not essential. As far as generalization performance is concerned we can prove the following.

Lemma 5.1. Consider a family A" : P — F,u € U, a cost function c, and its corresponding
family of risk operators Rg,Q € B. Let rp(A) denote the model risk (20) for the estimation
error model A (19) at P. Let Lip(c) be the Lipschitz norm of the cost function c in its first
argument. Let A be a selection from the parallel approximate learning model A (38). Then for
every @ € P we have

Rp(Aq) —rp(A) < aLip(c)+sup (Rp (A, u) — Rp(Ap,u)) +2sup |Rq(Ah, u)) — Rp(Ah, u)|

and

~

rp(4) = Rp(Ag) < sup (Rp(Ap,u) — Rp(Af,u)).

Proof. Since A is the graphical model (19) over U we obtain the inequalities of Lemma 4.1 in
terms of rp(A) = min, ; Rp(A%,u). Since rp(A) > rp(A) and rp(A) < rp(A) + aLip(c) the
proof is finished. ¢

Lemma 5.1 can be use to prove bounds on estimation error with respect to rp(A) in the
same way we used Lemma 4.1 in the proof of Theorem 4.1 at lines (29) and (30). The bound for
above rp(A)( as in Theorem 4.1) will contain the penalty aLip(c) indicating the performance
price paid for using the a-approximate model (38).

6 Model Selection

The VC theorem allows the study of the empirical error minimization model to be analysed in
terms of the approximation error ey = infyc e(h) and the VC dimension of the hypothesis
class H. In a similar way estimation error models may be analysed in terms of their model
risk  and their estimation error bounds such as in Theorem 4.1. Therefore, we can begin the
study of estimation error model selection.

We begin by investigating what assumptions concerning P can say about model selection.
In particular, we discuss some observations made in (Howse et al., 2001) concerning the term
CK? appearing in the results of Theorems 3.2,3.3, and 4.1. Let us distinguish between the
assumption |supp(z)| < K and the assumption ”it is known that |[supp(z)| < K”. In the latter
case we choose C' to depend upon K. Let Ck note such a dependence. Let ¢ = K _1¢' and
write @ for the transformation of @ induced by scaling # = K# such that |[supp(Q.)| < 1.
Then it is easy to see that if we write the criterion with dependence on C that

TG (,b) = K275 (i), b)
so that

CkK? =0,

16
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implies scaling covariance. Therefore when |supp(z)| < K is known we would choose the
constant C' = % Then the bounds of Theorems 3.2, 3.3, and 4.1, can be written in terms of
CxK? = C; and the dependence of the bounds on K disappears.

We change tact. Suppose we consider that the estimation error model SV M is an appealing
alternative to SVM since rp(SVM) < rp(SVM) (26) and it possesses the estimation error
bounds of Theorem 4.1. However, SVM has special structure that allows an alternative esti-
mation error model with desirable properties. As mentioned in the proof of Theorem 3.2 the
H component of SV Mg is a constant vg. Therefore if we define

SVMq = {(1q.b) : b € arg min Ro(vq. b)} (39)
where

Yo = Pu(SVMg)
is this constant (in b), with model risk at P

rp(SVM) = inf Rp(yp,b), (40)
it follows that

rp(SYM) < rp(SYM).

In addition since )¢ is constant in b there is no need for parallelization and the covering number
complexity can be reduced as in going from Theorem 3.2 to Theorem 3.3 and in the proof of
a version of Theorem 4.1. Namely we can obtain that for any selection from the canonical

strategy of SYM, if n > (CK? +)?

3(VOR11)? In %, then with probability greater than 1 — § we have

. e 2
rp(SVM) —€(d) < Rp < rp(SYM) + 20K

+ €(9)

where

e(9) =

In>.
NG 20Kz 1) "

4/ (2CK?
V2(% +1)\/1n(8\/ﬁ\/6K+1> ;1

Now consider that the choice of regularization constant C in the criterion Jg (v, b) = [1[? +
CEQn(y,p defining SVM (24) is an important open question in the design of support vector
machines. Let us treat the following model which gives a solution to this problem: assume

F=8xBxC

where C C Ry has no effect on the functions:

Define the family

AG = {(4§,b5) : (¥§,b5) € arg g}i;;(m"’ + CEqnyp)}

17
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to be the solutions of the soft margin criterion for fixed C and Q). For a given cost function
consider the estimation error model (19) defined by

SVMg = {(¥§,b5) : C € arg min Ro(4§ ,b5)}. (41)
with model risk at P

rp(SVM) = inf Bp(yf, b5). (42)

In almost any application SVMs use a kernel k£ : X x X — R which maps the data from the
input space X to the reproducing kernel Hilbert space H of k. In particular, the optimization
problem (7) is then solved in H. Furthermore, recall that a kernel on a compactum X is said
to be universal if its reproducing kernel Hilbert space is dense in C'(X), (cf. (Steinwart, 2001)).
The best known universal kernel is the Gaussian RBF kernel k(z,z') = exp(—a?|z — 2'|?).

Now if the cost function involved in (41) is the misclassification cost, let eg(f) denote the
misclassification risk of a function f : X — R. Then SVM chooses the pairs (wg, bg), cec
with the smallest misclassification risk and the model risk (42) is

SVM) = inf S, b%).
ep(SYM) lnf ep(¥p,bp)
Furthermore, if a universal kernel is used and C is unbounded we have
BP(SVM) = €Bayes »

where epgyes is the Bayes risk. In other words, the model risk of SV M equals the Bayes risk
in this case. The learning strategy of SYVM with misclassification cost function implements
empirical risk minimization over C to determine (<, ¢, C). However, for empirical data using
a universal kernel and an unbounded set C leads to overfitting since for all training sets without
contradicting samples (¢, b%) achieves zero empirical misclassification risk whenever C is large
enough, (cf. (Steinwart, 2001)). Hence we assume that C = C,, is bounded and depends on the
size n of the training set. The following theorem shows that under some assumptions all learning
algorithms (with the restrictions made in Theorem 3.2) based on the described strategy are

universally consistent:

Theorem 6.1. Let k : X x X — R be a continuous kernel with reproducing kernel Hilbert
space H. Assume, that X is compact and k is universal. Furthermore, let C,, C RT be such

that infC,, — oo and IOTgL” supCp, — 0 for n — oo. For each n-sample z, choose an arbitrary

regularization constant C,, € C,. Then we have

ep (¢Szn > brcz’zn ) — €Bayes

in probability forn — co. If k is a Gaussian RBF kernel on X C R? the condition 4/ lofln supC, —
0 can be replaced by the weaker assumption %sup Cp|logsupC, |1 — 0.

Proof. The proof essentially consists of the following simple observation: for all C' € C,, we

have
9l < Ve < /supCp =: ¢y ,
|bg|H < 1+VCK < 1+4+supC,K,
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where K := sup,cx k(z,z). Like in the proof of Lemma II1.10 (and Example II1.9 for the
Gaussian RBF kernel) in (Steinwart, 2003a) we also find

sup | Epf(y,p) — Eptig,p)| — 0
|¢|§Cn
[b]<1+cn K

in probability for n — co. In particular this yields
[Enitygon agony = BPTcon yony | = 0

The rest of the proof follows the approach discussed in the introduction of (Steinwart, 2003a).
¢

Finally we combine the ideas of the models SVM and SVM: again, let F = S x B x C
where Y = B x C is the new unstable component, and—as above— C C R, has no effect on
the functions, (¢,b,C)(z) = - x + b. Define the family

AG” =G = argmin (4]° + CEqny.p)

to be the 1 component of the fixed C' soft margin solution determined by ). For a given cost
function consider the estimation error model (19) defined by

SVMq = {(¥52,bq) : (bg, Cq) € arg b n)linXCRQ(z/Jg,b)}. (43)

(b,C)eB

with model risk at P

M) = inf S, b). 44
rp(SYM) (b,Cl)IéBxcRp(z/JP,) (44)

Note, that in contrast to SVM and SV M the model SVM determines both parameters b and
C by risk minimization. Furthermore, if we denote by SV M(C') the model SVM’s dependence
on C, with a similar meaning for SYM(C), it follows that

rp(SVYM) = géfc rp(SYM(C)) < (1}1&12 rp(SYM(C)). (45)
If the chosen cost function is the y-clipped cost function the next theorem shows that under

some assumptions all learning algorithms based on this model are universally consistent:

Theorem 6.2. Let k : X x X — R be a universal kernel on a compact space X and P such
that P(z € X : P(1|z) = 1/2) = 0. Furthermore, let C,, C R" be such that infC, — oo and
ﬁ supC,, — 0 for n — oco. For each n-sample z, choose (C,,,b,, ) according to the model (43)
with respect to the ~y-clipped loss function. Then we have

ep (¢7€zn > bzn) — €Bayes

in probability for n — oo.
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Proof. By our assumption on P and Theorem 3.9 in (Steinwart, 2003b) we see that for all
sequences (f,) of functions with Epns, )y — mins.x g Epns) we have

R — min R =R
P(fn) = min Rp(f) =: Rp,
where the risk is with respect to the ~y-clipped loss function. In particular we find

Rp < rp(SYM) < o rp(SYM(C)) = Rp

by (45). By our assumption on sup C,, Theorem 4.2 guarantees

C
1957 = ¢5" oo — 0

in probability. Furthermore, using the idea of the proof of Theorem 6.1 the results of (Steinwart,
2003a) yields

| Remp (577, b2,) = Rp($5* b, )| + | Remp(WS™ , bp) — Rp($57,bp)| — 0

in probability. Hence for all € > 0 and sufficiently large n the following estimate is true with
high probability

Remp(d’gz" yb2,) e
Remp(¢f7’a bP) +e
Remp($p7 ,bp) + 2¢
Rp (57, bp) + 3¢
Rp +4e.

R’P(d}n =, bZn )

(VAN VAN VANR VAN VAN

Now the assertion follows since ¢, is admissible in the sense of (Steinwart, 2003a). ¢

7 Experiments

This section describes experimental results for the SYM, SVM, SVM and SVM canonical
learning strategies applied to three different data sets. The first two data sets are synthetically
generated according to Fukunaga’s so-called I-4I and I-A distributions (Fukunaga, 1990), and
the third is the Spambase data set from the UCI repository (Blake & Merz, 1998).

For the synthetic data sets we set d = 8 and generate samples from R? x {—1,1} according
to the I-41 and I-A distributions. For both distributions the class marginals are P(y = —1) =
P(y = 1) = 0.5 and the class conditional distributions are Gaussian. For the I-41 distribution
the class conditional means and covariances are

po1=p1 =0
Yo=1, ¥ =4I,
and for the I-A distribution they are

po1=0, p = (3.86,3.10,0.84,0.84,1.64,1.08,0.26,0.01)
S_y =1, % =diag(8.41,12.06,0.12,0.22,1.49,1.77,0.35,2.73).
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For each distribution we generate a training set with n = 200 samples and a test set with
100, 000 samples.

The Spambase data set contains 4601 samples from RY x {—1,1} where d = 57. This
data set contains 1813 samples with y = —1 and 2788 samples with y = 1. We perform
random sampling (without replacement) to split this data into a training set with n = 3601
samples and a test set with 1000 samples. We also normalize the data as follows. We compute
(univariate) sample means and standard deviations for each of the 57 input dimensions over
the 3601 training samples, and then normalize all 4601 samples by subtracting the means and
dividing by the standard deviations.

We perform the following experiments. For the I-41 and I-A data we employ the Gaussian
RBF kernel k(z,z') = exp(—|z —1'|?/d). For the higher dimensional Spambase data no kernel
is used. For each of the three data sets and for each value of C' from the list

.01, .05, .1, .5, 1, 5, 10, 50, 100, 500, 1000, 5000, 10000

we apply the canonical learning strategy for SYM to the training set to obtain a classifier
(4n,bn) that minimizes the soft margin criterion, and we apply the canonical learning strategy
for SUM to the training set to obtain a classifier (@bn, n) where wn = 1), minimizes the soft
margin criterion and b, minimizes the y—clipped risk Remp(wn, ) with v = 0.01. We then use
the test sets to compute estimates of the y—clipped risks Rp for these classifiers.

Results are shown in Figure 1 where we provide two plots for each of the three data sets;
the first plot shows the clipped risks Rp (solid lines) and Ry, (dashed lines) with v = 0.01
for the SYM (denoted by the O symbol) and SYM (denoted by x symbol) classifiers, and the
second plot shows the classification error ep (i.e. Rp with v = 0) for these same classifiers. The
second plots also show the Bayes classification error eggyes for the I-4I and I-A distributions,
and the classification error ep-doc reported in the documentation for the Spambase data.

These results exhibit several noteworthy characteristics. First, the risk deviances |Rp —
Repp| are small, especially for the Spambase data where a larger training set is used. Second,
both the SVM and SVM strategies achieve nearly the same smallest risk value with the
appropriate choices of C'. In addition these smallest risk values are quite good in that they are
close to the Bayes risk for the I-41 and I-A distributions and close to the documented risk value
for the Spambase data. Of the two strategies, SV M seems more attractive. In all three cases
it achieves near—optimal risk values over a larger range of C' suggesting that it is more robust
to the choice of C'. In addition, since soft margin algorithms are typically faster for smaller C,
and SYM achieves smaller risks at smaller values of C, learning may be computationally more
efficient for SYM.

Finally, although we did not implement them directly we can infer results for SWM and
SVM as follows. A brute force implementation of the canonical strategy for SVM can be
obtained by employing the SV M strategy at all values of C € C to produce a set of classifiers,
and then choosing a classifier from this set that minimizes the empirical risk. A brute force
implementation of the canonical stratgy for SVM can be obtained by employing a similar
procedure with the SYM strategy. Thus, our experiments allow us to infer results for SV M
and SVM where C is the finite set of points listed above. The fact that the empirical risk
will be zero for sufficiently large C' when universal kernels are used (cf. (Steinwart, 2001)) is
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verified by our results for the I-I and I-A data. In addition larger values of C can lead to
larger risk deviance, as predicted by the theorems in previous sections and validated by our
experiments (e.g. this is most apparent in the results for the I-4I data set in Figure 1(a)).
This partially explains why the values of C' that minimize empirical risk are larger than those
that minimize risk, and why the SVM and SVM strategies may overfit when C contains
sufficiently large values. Nevertheless, the excess risk that results from these strategies is small
in our experiments, suggesting that these simple stratgegies may provide a useful method for
choosing C' in practice.

References
Barbu, V., & Precupanu, T. (1978). Convezity and optimization in banach spaces. The
Netherlands: Sijthoff and Noordhoff Publishers.

Blake, C., & Merz, C. (1998). UCI repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html: University of California, Irvine,
Dept. of Information and Computer Sciences.

Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. Journal of Machine Learning
Research, 2, 499-526.

Devroye, L., Gyorfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern recognition. New
York, NY: Springer.

Fukunaga, K. (1990). Introduction to statistical pattern recognition (2nd ed.). San Diego, CA:
Academic Press.

Howse, J., Hush, D., & Scovel, C. (2001). Linking learning strategies and performance for
support vector machines. unpublished.

Kutin, S., & Niyogi, P. (2002). Almost-everywhere algorithmic stability and generalization
error. University of Chicago Report, TR-2002-03.

Rockafellar, R. (1970). Convex analysis. Princeton: Princeton University Press.

Steinwart, I. (2001). On the influence of the kernel on the consistency of support vector
machines. Journal of Machine Learning Research, 2, 67-93.

Steinwart, I. (2002). Support vector machines are universally consistent. J. Complexity, 18,
768-791.

Steinwart, I. (2003a). Consistency of support vector machines and other regularized kernel
classifiers. IEEFE Transactions on Information Theory, accepted with revisions.

Steinwart, I. (2003b). Sparseness of support vector machines. Journal of Machine Learning
Research, accepted with revisions.

Vapnik, V. N. (1998). Statistical learning theory. New York: John Wiley and Sons, Inc.

22



LANL Technical Report: LA-UR-03-4845 REFERENCES

Vidyasagar, M. (1997). A theory of learning and generalization. Berlin: Springer-Verlag.

Zhang, T. (2001). Convergence of large margin separable linear classification. In T. Leen,
T. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems 13
(pp. 357-363). MIT Press.

Zhang, T. (2003). Statistical behaviour and consistency of classification methods based on
convex risk minimization. Annals of Statistics, to appear.

23



LANL Technical Report: LA-UR-03-4845 REFERENCES

0-6 T T T T T
Rp-SYM e
0.5 =g Rp-SYM  — -
—_— A R SVM
04t | Remp-SYM o
03} ‘ .
0.2 .
0.1t T :
0 I I I oo & 0 I I I I I I
-2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4
log(C) logy,(C)

(c) I-A
0-5 T T T T T T
R’p-S\{M — 8
Rp-SYVM  —— |
0.4 f—e-s Remg-SVM -
mp-SVYM Koo
0.3 fems -
0.2 8
0.1 4
0 1 1 1 1 1 1 0 1 1 1 1 1 1
2 -1 0 1 2 3 4 5 2 -1 0 1 2 3 4
log,,(C) log0(C)
(e) Spambase (f) Spambase

Figure 1: Plots of risk verses log;,(C) for SVM and SVM learning strategies applied to the
I-41, I-A and Spambase data sets.
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